Effect of the crack length monitoring technique during fatigue delamination testing on crack growth data

D. Sans, J. Renart, J. A. Mayugo, J. Costa

University of Girona (Spain)
Framework

An integral approach to account for interlaminar fatigue damage in the design of composite structures

A Turon, J Costa, PP Camanho, CG Dávila
Simulation of delamination in composites under high-cycle fatigue
Framework

- An integral approach to account for interlaminar fatigue damage in the design of composite structures.

SIMULATION

- How reliable are existing experimental methods for fatigue characterization?
Framework

Crack growth rate under mode I loading.

DCB Double Cantilever Beam

![Diagram of Crack Growth Rate](image)

- Region I: Fatigue threshold
- Region II: Crack growth rate
- Region III: Static failure

Parameter:
- \(\frac{da}{dN} \) (mm/cycle)
- \(G_{\text{max}} \) (J/m²)

Equation:

\[
\frac{da}{dN} = G_{\text{max}} \]

Symbols:
- \(da \): Crack extension
- \(dN \): Number of cycles
- \(G_{\text{max}} \): Maximum energy release rate
Framework

Crack growth rate under mode I loading.

Tests typically performed under controlled displacement and constant amplitude ($\delta_{\text{max}}, \delta_{\text{min}}$)
Framework

Crack growth rate.

A set of \(a(N) \) points is needed to get \(da/dN \)

Crack length observed from the edge of the specimen.

Visual inspection to measure “\(a \)”

- Scatter of the data
- Subjective (unless some automation of the image processing is used)
- Menicus shape of the crack front
Framework

Menicus shape of the crack front.
Objective

- Use of Fibre Bragg Grating sensors to monitor the “real crack” during fatigue crack growth and assess the effect of monitoring it through the specimen’s edge.

Acknowledgment: J. Botsis from the Laboratory of Applied Mechanics and Reliability Analysis (LMAF) of EPFL
Fibre Bragg Sensors

\[\Delta \lambda = K \varepsilon_{11} \]
Fibre Bragg Sensors

Two Optical Fibers (OF) in each specimen
In each OF: Array of 4 sensors separated 2 mm.
Each sensor: 1mm in length
FBG’s positioning

It shouldn’t be placed too close to the crack plane
FBG’s positioning
FBG’s positioning

- Exact horizontal positioning by means of Optical Low Coherence Reflectometry

![Diagram of FBG's positioning]

Distance z_{FBG} [mm]

<table>
<thead>
<tr>
<th>Specimen</th>
<th>FAT1 OF1</th>
<th>FAT1 OF2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>76.08</td>
<td>77.76</td>
</tr>
<tr>
<td>2</td>
<td>78.43</td>
<td>79.83</td>
</tr>
<tr>
<td>3</td>
<td>80.34</td>
<td>81.74</td>
</tr>
<tr>
<td>4</td>
<td>82.45</td>
<td>83.82</td>
</tr>
</tbody>
</table>
Fibre Bragg Sensors
Crack tip detection

Sharp crack. Pure elastic

Fracture process zone. Quasibrittle
FBG strain vs. N

8 \((a_{FBG}, N)\) points for each specimen
a_{VIS} vs. N

Continuous shooting of pictures and post-analysis

40 (a_{VIS}, N) points for each specimen
Real time monitoring of the compliance, $C(N)$

\[C = \frac{\Delta \delta}{\Delta P} \]

\[C = \frac{\delta_{\text{max}}}{P_{\text{max}}} \]
Extrapolation to a continuous $a(N)$

Modified Compliance Calibration:

$$\frac{a}{h} = C^{1/3} A_1 + n$$

![Graph showing extrapolation to a continuous $a(N)$ with data points for VIS and FBG methods.](image)
da/dN vs. G_{max}

\[G_{\text{Imax}} = \frac{P_{\text{max}}^2}{2B} \frac{dC}{da} \]
Fatigue vs. static data

\[\frac{da}{dN} \text{ (mm/cycle)} \]

\[G_{\text{Imax}} \text{ (J/m}^2\text{)} \]

VIP

GIC

PROP

GIC

NL

GIC

5% MAX

GIC
FBG vs. VIS

\[da/dN \text{ (mm/cycle)} \]

\[G_{I_{\text{max}}} \text{ (J/m}^2\text{)} \]

- **FBG**
- **VIS**
FBG vs. VIS

\[\frac{da}{dN} (\text{mm/cycle}) \]

\[G_{th} \]

\[G_{th} \]

\[G_{th} \]

\[m \]

\[\begin{array}{|c|c|c|c|}
\hline
\text{Specimen} & \text{Method} & m & G_{Ith} [\text{J/m}^2] \\
\hline
\text{FAT1} & \text{VIS} & 20.57 & 129.93 \\
\text{FAT1} & \text{FBG} & 20.83 & 119.25 \\
\hline
\end{array} \]
FBG vs. VIS

$\frac{da}{dN}$ (mm/cycle) vs. G_{Imax} (J/m2)

VIS

FBG

$G_{\text{th FBG}}$

$G_{\text{th VIS}}$

m
FBG vs. VIS

\[a \text{ (mm)} \]

\[N \]

\[\triangle \text{ VIS computed} \]
\[\square \text{ FBG computed} \]
\[\bigcirc \text{ VIS measured} \]
\[\bigcirc \text{ FBG measured} \]
It is just a constant shift?

\[\Delta a \]

VIS corrected with constant Δa
FBG vs. VIS

![Graph showing comparison between VIS computed, FBG computed, VIS measured, and FBG measured results. The graph plots the variability (Δa) against the cycle number (N) with a focus on the progression of a (mm) up to 90 mm.]
The difference between crack length measured by VIS and FBG methods evolves during the test (why?)
Conclusions

- This work has shown the feasibility to apply FBG’s sensors to accurately monitor fatigue tests under mode I loading.
- Fatigue tests are suitable to assess onset static data.
- Monitoring the crack by the edge (VIS) is not a conservative method to generate fatigue data for design:
 - in the material studied, crack growth rate is 10 times lower than the measured with FBG’s
 - threshold energy, G_{th}, is 10% higher
- The difference between a_{VIS} and a_{FBG} evolves during the test suggesting that the failure process zone also evolves.
Coming next

- Make use of FBG’s to study the fracture process zone:
 - Evolution during the test
 - Bonded joints
- Analyse fatigue testing under mode II and mixed-mode tests