

# METHODOLOGY OF MATERIAL PARAMETERS IDENTIFICATION IN SANDWICH PANELS VERSUS COMPUTER SIMULATION

M. Chuda-Kowalska1, A. Garstecki1

<sup>1</sup>Institute of Structural Engineering, Poznan University of Technology (Poland)

#### **INTRODUCTION**

> Panels: thin, steel faces, soft PU core

> Assumption of isotropy is not true!



displacement (mm)

### **TESTING FOCUSED ON ANISOTROPY**







 ${\it E_{C1}}-$  compression in the thickness (rise) direction  ${\it E_{C2}}-$  compression in the width direction  $E_{C3}$  – compression in the length direction





#### **GOALS**

Advanced numerical models require a number of properly identified parameters. Most important is Kirchhoff modulus G<sub>C</sub>. Anisotropy must be accounted for.

|   | Behaviour of Sandwich | Computer model                | Material               | Testing method         |
|---|-----------------------|-------------------------------|------------------------|------------------------|
| 1 | Global response       | Timoshenko beam theory (1D)   | Linear, isotropic      | Classical bending test |
| 2 | Orthotropic Sandwich  | Modified Reissner theory (2D) | Linear, isotropic      | Advanced tests         |
| 3 | Local phenomena       | FEM (3D)                      | Nonlinear, anisotropic | Advanced tests         |

# DETERMINATION OF GC

1a.) Bending test - measurement of displacements (classical approach)



$$w = w_B + \mathbf{w_S}$$

$$w_B = \frac{23 \cdot F \cdot L^3}{1296 \cdot B_S}$$

$$G_C = \frac{F \cdot L}{6 \cdot A_C \cdot w_S}$$

 $G_C = 3.81 \text{MPa}$ 

(1b.) Bending test - measurement of angles of rotation (proposal)





Two angles of rotation, which appear in Timoshenko beam theory are measured in the vicinity of a support. The  $\alpha_0$  is the angle of cross-section rotation, the  $\gamma_0$  is the slope of the panel. The shear modulus is calculated directly from the difference between these angles.

$$\begin{split} \gamma &= \gamma_0 - \alpha_0 \\ \tau &= G_C \cdot \gamma \iff G_C = \frac{V}{\gamma \cdot A_C} \end{split}$$

# 2a (3a). Double lap shear test





 $G_C = 3.01 MPa$ 

# 2b (3b). Torsion test





$$\varphi' = \frac{\varphi}{L}, \quad \varphi' = \frac{M_S}{G_C \cdot I_0}$$

 $G_{C} = 2.67 MPa$ 

2c (3c). Compression test with confinement of transverse displacements

Result:  $v \approx 0$ 



#### CONCLUSIONS

- Evident anisotropy of PU core
- Bending test → valuable but insufficient
- Need for testing methods providing more material parameters
- Interesting that: different testing methods → different results
- Proper identification of material parameters → still challenging issue

# References:

- 1. R. Juntikka, S. Hallstorm, Shear characterization of sandwich core materials using four-point
- bending, *Journal of Sandwich Structures & Materials*, **9** (1), 2007, pp. 67-94.

  2. M. Chuda-Kowalska, Z. Pozorski, A. Garstecki, Experimental determination of shear rigidity of sandwich panels with soft core, Proc.10th Int. Conf. Modern Buildings Materials, Structures and Techniques, Vol I, Vilnius, Lithuania, VGTU 2010, pp. 56-63.
- V. Tita, M. F. Caliri Junior, Numerical simulation of anisotropic polymeric foams, *Latin American Journal of Solids & Structures*, 9 (2012), pp. 259-279.